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Abstract
The Rabinovich-Fabrikant system is a chaotic system of nonl inear ordi-

nary di�erential equations in three dimensions. Using the L ocal Iterative
Linearization method and a Runge-Kutta method (both of four th order
and identical step-size) phase plots are generated and compared. Issues
concerning the numerical approximation of chaotic systems are explored.

1 Introduction

The Rabinovich-Fabrikant system [1] (hereafter, the RF system) is a chaotic
dynamical system of three ordinary di�erential equations (ODEs) in three vari-
ables and two constant parameters, as follows:

x0 = y(z � 1 + y2) + ax

y0 = x(3z + 1 � x2) + ay

z0 = � 2z(b+ xy)

where the constant parametersa, b > 0. The RF system models self-modulation
of waves in nonequilibrium media (speci�cally, dissipative media). For more
information on the physics of the RF system, consult [1]. Later in the numerical
experiments we will see that the set of parameters (a; b) has dramatic e�ects
on the behavior of the system. This system is lesser known than others such
as the R•ossler and Lorenz systems [2, 3], but there is numerical research in
the literature for the RF system. Additionally, statistica l evidence that the RF
system is chaotic was published by Luoet al in [4]. Much published numerical
research of the RF system uses an algorithm called Local Iterative Linearization
(LIL) for numerical integration of the system [4, 5, 6]. In th is paper, 4th order
LIL and Runge-Kutta (RK) methods of identical step-size are implemented in
the MATLAB computing environment.
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1.1 Chaos and other concepts

Some of the terms and concepts used in this paper may be unfamiliar to those
who have not yet taken courses in numerical analysis or di�erential equations,
so a brief overview of some concepts in the numerical study ofchaos follows.

A dynamical system is a system whose state evolves according to a �xed,
deterministic rule. A nonlinear equation has powers and functions ofx other
than x1 and x0: Chaos receives a working de�nition from Devaney [7] in three
parts:
1) The system has the famous property ofsensitive dependence on initial con-
ditions, that is: there exists a � > 0 such that if you pick an point x0 and a
neighborhood aroundx0, there is a point x1 in that neighborhood such that the
orbits of x0 and x1 will eventually separate by � .
2) The system is topologically mixing - if you pick two open subsets of the do-
main, the orbit of one set will eventually intersect the other.
3) The system hasdense periodic orbits- for any point in the domain and any
neighborhoodN of that point, there is at least one point from a periodic orbit
in N .

2 Numerical methods for solving x0= f (x)

Numerical methods for di�erential equations are used to generate close approx-
imations to the exact solution of problems which are di�cult or impossible to
solve analytically. They are essential to examine behaviorof chaotic systems.
Next we introduce Euler's method in order to later illustrat e some key concepts.
Afterward we describe the LIL and RK methods.

2.1 Euler's method

Euler's method is the following:

xn +1 = xn + hf (xn ) n = 0 ; 1; 2; ::: (1)

where h is the timestep.
Beginning with an initial condition x0 at time t0, we move forward repeatedly

by timestep h: Euler's method is based on the Taylor expansion ofxn +1 , as
shown below:

x(tn +1 ) = x(tn + h) = x(tn ) + hx0(tn ) +
1
2

h2x00(tn ) + O(h3) (2)

where O(h3) indicates the remainder of the series expansion. Ash approaches
zero, O(h3) is no larger than Kh 3 for some �xed K .

Euler's method uses the �rst two terms of the Taylor expansion of xn +1 :
Therefore, the truncation error of Euler's method is the di� erence between the
numerical result and the value of the exact expansion, or:
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1
2

h2y00(tn ) + O(h3): (3)

2.2 Local Iterative Linearization

As described in [5], the 4th-order Local Iterative Linearization method is:

xn = 2 xn � 1 �
8
5

xn � 2 +
26
35

xn � 3 �
1
7

xn � 4 +

h
12600

(6463f (xn ) � 2092f (xn � 1) + 2298f (xn � 2) � 1132f (xn � 3) + 223f (xn � 4))

where n = 4 ; 5; 6; :::. As LIL is a multistep method, four previous values of
the vector x i and the function evaluations f i = f (x i ) (for i = 0 ; 1; 2; 3) are
necessary to begin implementation of LIL. Therefore, a 4th-order Runge-Kutta
method (see next section) was used to generate the three results succeeding the
initial conditions in order to begin using Local Iterative L inearization. This
makes implementation and analysis of this method more di�cult than other
methods, as temporary use of another method is required. LILis implemented
as a predictor-corrector method. The evaluation of f (xn ) is an extrapolation,
which is then corrected by the other terms of the formula.

2.3 Runge-Kutta

\The most popular Runge-Kutta method" (RK4) is de�ned in [9] as follows:

xn +1 � xn =
h
6

(k1 + 2 k2 + 2 k3 + k4)

k1 = f (xn )

k2 = f (xn +
1
2

hk1)

k3 = f (xn +
1
2

hk2)

k4 = f (xn + hk3)

This method gives fourth-order accuracy with only four evaluations of f; whereas
with Runge-Kutta methods that yield order higher than � = 4 ; the number of
evaluations of f is greater than �: RK4 has the advantage of being a one step
method: it does not require previous values, so one may go directly from tn to
tn +1 by taking multiple function evaluations within the step h:

3 Stability

The stability of a numerical method refers to the behavior and propagation of
errors. A method is considered stable if the eigenvalues of the Jacobian matrix
(which is constant for linear problems, but changes every step for nonlinear
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problems) lie within the stability region of the method when scaled byh: Using
MATLAB and the information in Danca [5] and Butcher [10], sta bility plots
were generated for both numerical methods.
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(a) 4th-Order Runge-Kutta
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(b) 4th-Order Local Iterative Linearization

Figure 1: Stability Regions

The 4th-order LIL method is implemented as a predictor-corrector method
and therefore has explicit (bounded) stability. It was stated in [5] that the
predictor-corrector implementation of this method has the same stability region
as the implicit method (Figure 1(b).) However, numerical experiments indicate
that this is not the case. A forthcoming paper will explore this in more detail
and give a complete analysis. The explicit 4th-order Runge-Kutta method is
stable for the area inside the plot in Figure 1(a). As can be seen in Figure 1
above, neither method isabsolutely stable(including the entire left half-plane
in its stability region) as de�ned in [10].

3.1 Examining stability

Linear stability is a strong characteristic of numerical methods, but when study-
ing nonlinear systems, things are seldom so neat. Iserles [11] mentions a method
for attempting to translate \linear theory to a nonlinear se tting," while cau-
tioning that such is better than nothing, but worse than embracing nonlinear
properties from the outset. Nevertheless, this has been adopted here for illus-
trative purposes. A script was written in MATLAB to utilize t he Runge-Kutta
method used throughout this paper, and plot the eigenvaluesof the Jacobian
matrix of the RF system, scale them by the stepsize, and see whether they lie
within the linear stability region.
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Figure 2: Eigenvalues and stability region, using RK4 fora = 0 :1; b = 0 :05; t = 5

To illustrate what happens when methods become unstable, weselected the
parameter set a = 0 :1; b = 0 :05; which is (in our experience) stable for a step
size of h = 0 :001: The step size was raised toh = 0 :1 to better illustrate
instability. In Figure 2, at t = 5, one can notice scaled eigenvalues outside the
stability region (remember: since RK4 is explicit, the stability region is inside
the curve.)
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Figure 3: Eigenvalues and stability region, using RK4 fora = 0 :1; b = 0 :05; t =
83

Time t = 83 is the last time value for which our experimental setup could plot
the rapidly-growing numerical result. The eigenvalues of the Jacobian matrix
of the RF system had remained outside the stability region, and at this point
the method became unstable and the numerical solution grew without bound
(Figure 4.) The numerical errors could be growing without bound in this case. It
is also possible that the method is accurately modeling an unbounded analytic
solution. However, based on the eigenvalues exiting the stability region, we
believe the former to be more likely. It is also interesting to note here that
the eigenvalues in these two �gures are practically indistinguishable, despite the
large time di�erence. However, close examination of Fig. 2 shows eigenvalues
not present in Fig. 3 which are very close to the boundary of the stability region.
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Figure 4: 3D phase plot of the RF equations using RK4 fora = 0 :1; b= 0 :05; h =
0:1

In Figure 4 is a phase plot of the system, illustrating the results of such unsta-
ble behavior. The numerical result grows without bound. If the corresponding
analytic solution is bounded, numerical integration no longer approximates the
behavior of the system.

4 Accuracy

When one discusses theorder of accuracy (or more simply, order) � of a numer-
ical method, we are referring to the truncation error

Er = O(h� +1 ): (4)

That is, the error is proportional to the stepsize h; taken to the power � + 1 :
Euler's method (2,) a popular �rst-order numerical method, serves as a perfect
example to illustrate core properties of the order of a method.

The increasing powers ofh in 3 indicate that O(h3) will have smaller bearing
on the error than the 1

2 h2y00(tn ) term. Thus, we consider the error as being
proportional to h2; and so the order of Euler's method is 1.

A convergence plotcan be used to numerically verify the theoretical order of
accuracy. by matching a numerical method against a problem with an analytical
solution. The absolute error at each timestep is computed and plotted (with
both axes on logarithmic scales) versus the stepsizeh: Since the error� Chp,

log(error ) � log(Chp) (5)
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log(Chp) = log(C) + p(log(h)) (6)

which gives us the slope-intercept form of a liney = mx+ b;asm = �; x = log(h);
and b = log(C):
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Figure 5: Error plot for the problem y0 = � y; y(0) = 1 ; t0 = 0 ; tend = 1 ; h =
0:001

In Figure 5 the error increases as the step sizeh increases. As expected,
the Euler's method plot has a slope of approximately 1, whilethe 4th order
Runge-Kutta and LIL methods have error plots with slope 4.

5 Numerical experimentation

In the following experiments, we will use Runge-Kutta and LIL methods to solve
the Rabinovich-Fabrikant equations for various parameters (a; b) and obtain
phase portraits, which we will use to discuss the behavior ofthe system.

5.1 Region di�erences

For certain parameter sets, the phase portraits show qualitative similarities
but marked region di�erences. The set (a; b) = (0 :1; 0:05) (Figures 6, 7), for
example, shows a clear di�erence in scale, with the 4th-order Runge-Kutta result
occupying a much larger space than the 4th-order LIL result.
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