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Abstract

Radial basis function (RBF) methods are popular methods for scat-
tered data interpolation and for solving PDEs in complexly shaped do-
mains. RBF methods are simple to implement as they only require el-
ementary linear algebra operations. In this work center locations that
result in matrices with a centrosymmetric structure are examined. The
resulting matrix structure can be exploited to reduce computational ex-
pense and improve the accuracy of the methods while avoiding more com-
plicated techniques such as domain decomposition.

1 Introduction

Radial basis function (RBF) methods are popular methods for scattered data
interpolation and for solving PDEs in complexly shaped domains. Contribut-
ing factors to the popularity of RBF methods are their simplicity, ease of use,
and flexibility. The methods are conceptually simple as the core operations in
their implementation are solving linear systems of equations and matrix-vector
multiplication. The extreme flexibility of RBF methods is due to the fact that
there is complete freedom as to where centers may be located.

In many complexly shaped domains, this freedom can be taken advantage of
to reduce the flop count of common linear algebra operations by a factor of two
to four, to reduce storage requirements by a factor of two, and to increase the
accuracy of the methods. Placing scattered centers symmetrically about a line
that divides a domain in half results in RBF matrices that have a centrosym-
metric structure. All the algorithms and several examples from this manuscript
are implemented in the freely available Matlab RBF toolbox (MRBFT) [19, 22].

The centrosymmetric structure that is sought in RBF methods in this manuscript
is present in differentiation matrices of the polynomial based Chebyshev pseu-
dospectral method [3, 25]. The structure has been exploited in the Cheby-
shev pseudospectral method in order to halve the storage requirements and flop
counts for matrix-vector multiplication. Pseudospectral methods are tied to a
fixed structured grid in one dimension and to tensor products of that grid in



higher dimensions. RBFs methods can realize matrices with a centrosymmetric
structure with far less restriction on center locations.

Previously in reference [14] the authors located centers on concentric circles
which resulted in RBF matrices with a block circulant structure which allowed
the Fast Fourier Transform to be efficiently used in the execution of the method.
The method is limited in that it does not apply to scattered data or to com-
plexly shaped domains. Subsequently [15], conformal mapping was used to map
several complexly shaped domains to circles in order to apply the block circulant
algorithm. Seeking a centrosymmetric rather than circulant structure allows the
RBF method to work with scattered centers in complexly domains that have
symmetry.

2 Radial Basis Function methods

RBF interpolation uses a set of N distinct points X = {x¢,..., 2%} in R? called
centers. No restrictions are placed on the shape of problem domains or on the
location of the centers. In this work global, infinitely differentiable, RBFs ¢
that contain a free parameter € > 0 called the shape parameter are employed.
The inverse quadratic (IQ)
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are representative of this type of RBF. The variable r in the definition of the
IQ and GA is r = ||z — z¢||, where z,2¢ € R%. A formal, broader definition
of RBFs can be found in reference [28, p. 78] that includes functions with

compact support, less smoothness, and which do not contain a shape parameter.

Infinitely differentiable RBFs that contain a shape parameter are attractive

because they potentially [28, p. 183] interpolate with exponential accuracy.
The RBF interpolant assumes the form

N
Inf(a) = axd (o — 5ll,) (3)
k=1
where a = (a1, as,.. ., aN)T is a vector of expansion coefficients. The expansion
coeflicients are determined by enforcing the interpolation conditions
In f(x5) = f(x5), i=12,...,N (4)
which result in a N x N linear system
Ba = f. (5)

The matrix B with entries

bir = o(||a§ — 25|,),  Gk=1,...,N (6)



is called a system matrix. The evaluation of the interpolant (3) at M points x; is
accomplished by multiplying the expansion coefficients by the M x N evaluation
matrix H that has entries entries

hje = ¢(|z; — 25ll,),  j=1,....Mandk=1, .. N. (7)

For later reference, the signed distance matrices are defined, for example in two
space dimensions, to have elements

C_

(r2)jk = x5 — xf, and (1y) & = Y5 — Yk, s k=1,...,N (8)

and the distance matrix has elements
ik =) (re)3, + (1) e jk=1,...,N.

By linearity, the RBF interpolant can be differentiated as

N
D(Inf(x) =Y axDo(|lz — ) (9)

k=1

where D is a linear differential operator. The operator D may be a single
derivative or a linear differential operator such as the Laplacian. Evaluating (9)
at the centers X can be accomplished by multiplying the expansion coefficients
by the evaluation matrix Hp with entries

hik = Do(|| 5 — 27 |,), g k=1,...,N. (10)

That is, Df ~ Hpa. Alternatively, derivatives can be approximated by multi-
plying the grid function values {f (xi)}ivzl by the differentiation matrix D =
HpB™! since

Df ~ Hpa = Hp(B™'f) = (HpB™")f. (11)

Both equations (5) for the expansion coefficients and (11) for the differenti-
ation matrix assume that the system matrix is invertible. The system matrix
must be invertible in order to guarantee the existence of a unique solution. The
IQ and GA system matrices are symmetric positive definite (SPD) and thus
invertible [8]. While invertible, the system matrix is typically very poorly con-
ditioned. The eigenvalues of B satisfy 0 < Apin = A1 < Ao <+ -+ < AN = Mnas
and the matrix condition number in the 2-norm is k2 (B) = Amaz/Amin. Addi-
tional information on the eigenvalues of RBF system matrices can be found in
reference [20]. For a fixed set of centers, the shape parameter affects both the
accuracy of the method and the conditioning of the system matrix. The RBF
method is most accurate for smaller values of the shape parameter where the
system matrix is ill-conditioned [23]. The attainable error and the condition
number of the system matrix cannot both be kept small. This relationship has
been dubbed the uncertainty principle [24]. We stress that the content of this
manuscript applies to the RBF method with standard basis functions and not
to alternative basis RBF methods as described in [7] and the references within.

Recent monographs [4, 8, 23, 28] on RBF methods can be consulted for more
information.



3 Structured Matrices

This section summarizes pertinent definitions and theorems concerning struc-
tured matrices. The definitions and theorems can be found in various forms in
multiple references including [1, 2, 5, 6, 10, 16, 27].

The contra-identity matrixz J is a square matrix whose elements are all
zero except those on its southwest-northeast diagonal which are all 1’s. J is
a permutation matrix. Multiplying a matrix B by J from the left results in
reversing the rows of B and multiplying B by J from the right results in reversing
the columns of B.

Definition 1 Let x be a N x 1 vector.

1. A vector x is symmetric if Jr = x. The elements of a symmetric vector

satisfy x; = xn—i+1 for i = 1,...,N. Such a vector is also said to be
even.
2. A vector is skew-symmetric if Jr = —x and its elements satisfy x; =

—TN—it+1- Such a vector is also said to be odd.

Definition 2 Let B be a N x N matriz.

1. B is centrosymmetric (centro for short) if B = JBJ. The elements
of a centrosymmetric matriz satisfy

bij = bN_it1,N—j+1, 1<4,5<N. (12)

2. B is skew-centrosymmetric if B = —JBJ. The elements of a skew-
centrosymmetric satisfy

bij = —bN—it1,N—j+1- (13)

Throughout N is even and P = N/2. All results hold for odd N but the
notation is more cumbersome and only even N are considered for clarity and
space considerations. Throughout this section, B is an arbitrary centrosym-
metric matrix as defined in Definition 2. In later sections, B is taken to be
the RBF system matrix which is by definition symmetric and can also be cen-
trosymmetric if the underlying center distribution that the matrix in based on
is distributed in a certain way.

Theorem 1 [5] A N x N centrosymmetric matriz B can be written as

| Bi1 JBaJ
B= [ By JB11J ] (14)
where Bi1, Bo1, and J are P x P. Additionally if B is symmetric, then By =
Bl, (By is symmetric) and JBa1J = Bay.



Theorem 2 [5] The matriz (14) and

| L=Bn—JBy 0
D= { 0 M = By1 + JBa } (15)
are orthogonally similar.
Proof. The matrix
111 —J
1 ] "

is easily verified to be orthogonal and multiplication gives that QBQT = D O

In Theorem 2, L and M could have been defined as L = By; — JBy =
Bi1 — J(=JB12J) = B11 + BioJ and M = By; + JBa1 = Bi1 + J(—JBng) =
B11 — By2J. The two definitions allow the option of using either the upper half
or the left half of the matrix in the algorithms that follow. The implementation
of the algorithms in the MRBFT [22, 19] uses the left half of the matrices.

Theorem 3 [5] A N x N skew-centrosymmetric matriz B can be written as

| Buu —JBaJ

B= Boy —JBu1J

(17)
where B11, Ba1, and J are P x P. Additionally if B is skew-symmetric, then
Bi1 = =B, (Byy is skew-symmetric) and JBayJ = BY.

4 Center locations for centrosymmetry

RBF system matrices and RBF differentiation matrices are (skew) centrosym-
metric if the signed distance matrix (8) is skew-centrosymmetric for odd order
differential operators and either skew-centrosymmetric or centrosymmetric for
even order differential operators. The condition does not depend on the location
of centers but rather on the distance between centers. Any center distribution
in one dimension that is symmetrical about its mid-point causes the signed
distance matrix to be skew-centrosymmetric. Such center distributions in-
clude uniformly spaced centers and the Chebyshev-Gauss-Lobatto (CGL) points
xp = cos (kr/(N — 1)), k=0,1,...,N —1 that cluster centers densely around
the endpoints.

This section examines center distributions that result in RBF system and dif-
ferentiation matrices that have either a centrosymmetric or skew-centrosymmetric
structure. For brevity, both types of distributions are called centro center dis-
tributions throughout. Interpolation is considered an order zero (even order)
derivative. For example, consider the following three center distributions within
symmetric domains that are possible in two space dimensions:



origin The domain is discretized with centers (z, y) on one side of the line y = x
and the remaining portion of the domain is covered with centers (—x, —y).
For example X, = {(x1,91), (x2,92), (—x2, —y2), (—x1,—y1)}. On such a
center distribution, all system matrices (interpolation) will be centrosym-
metric, all even order derivative matrices will be centrosymmetric, and all
odd order differentiation matrices will be skew-centrosymmetric.

x-axis The domain is discretized with centers (z,y) on one side of the line
y = 0 and the remaining portion of the domain is covered with centers
(z, _y)' For example X; = {(xlayl)v (72,92), (‘T27 —Y2), (‘Tlv _yl)}' On
such a center distribution, system matrices will be centrosymmetric, even
order differentiation matrices will be centrosymmetric, odd order differen-
tiation matrices with respect to x will be centrosymmetric, and odd order
differentiation matrices with respect to y will be skew-centrosymmetric.
The discretization of the divergence operator G = 9/0x + 9/dy will
not have either type of symmetry as the sum of a centrosymmetric and
skew-centrosymmetric matrix is in general not centrosymmetric or skew-
centrosymmetric.

y-axis The domain is discretized with centers (z,y) on one side of the line
x = 0 and the remaining portion of the domain is covered with centers
(_‘Tv y) For example X. = {(xluyl)v (l‘g,yg), (-l’g,yg), (—Jil,yl)}. On
such a center distribution, system matrices will be centrosymmetric, even
order differentiation matrices will be centrosymmetric, odd order differen-
tiation matrices with respect to x will be skew-centrosymmetric, and odd
order differentiation matrices with respect to y will be centrosymmetric.
The divergence will not have either type of symmetry.

The script isCentroTest.m tests a collection of differential operators on
various center distributions for centrosymmetry and centroFExtensions.m ap-
proximates various differential operators on each type of centrosymmetrically
extended center distribution.

Figure 1 gives four examples of centrosymmetric center distributions. The
centers in the circular domain in the upper left image were produced by placing
quasi-random Hammersley [17] points (z,y) on the circle which are clustered
near the boundary and then extended about the line y = z via (—z, —y). The
centers in the dumbell shaped domain in the upper right image were located
by covering the right half of the domain with (x,y) and then the left half with
(—z,y). Centrosymmetric center distributions could also be obtained in this
domain by extending about the x-axis or the origin. For the region with a hole
in the lower left image which is symmetric with respect to the origin, the half
of the domain above the line y = x is covered with centers and then the re-
maining part with centers located at (—x,—y). In order to exploit symmetry,
it is not necessary that the original domain have one of the three types of sym-
metry. Symmetry can also be exploited if the domains can be transformed to
have symmetry via a linear transformation or a rotation as is the case in the
next domain. The domain in the lower right image of Figure 1 is symmetric



with respect to the x-axis after it is rotated 0.25 radians. The domain uses
two different center densities that feature Hammersley points which are located
more densely near the boundary than in the interior. A different rotation of
the domain would make it possible to exploit symmetry with respect to the ori-
gin. The script complexCentroCenters.m produces the center distribution.
The script interp3dCentro.m produces a centro center distribution in 3d and
evaluates an interpolation problem on the surface of a sphere.

Figure 1: Center distributions that result in centrosymmetric system matrices.
Upper left: 1575 clustered Hammersly point on the unit circle. Upper right:
852 scattered centers on a dumbell shaped domain. Lower left: 920 scattered
centers. Lower right: 2542 scattered centers.

5 Centrosymmetric algorithms

The next several subsections detail linear algebra algorithms for centrosymmet-
ric matrices. Flop count savings and accuracy gains are realizable compared



to standard algorithms. The algorithms include: the solution of centrosym-
metric linear systems which are applicable to RBF interpolation and derivative
approximation, differentiation matrix formulation, RBF system matrix condi-
tion number calculation, and centrosymmetric matrix-vector multiplication. All
errors are measured in the infinity norm.

5.1 Linear systems

102
0.7 L " ‘ centrosymmetric ‘
* % standard
100 T I 1
*. *
© 0.6 m £
I * B ook
© * % _10 * .
Eos * o S ™
c 5
2 * 10 "
3 * **!m
g 0.4 *
B »* ¥,
o %* %* 10 6 #
*x * *** *
03 * L
108
2000 4000 6000 4 6 8 10 12
N shape parameter

Figure 2: Left: Ratio of the centrosymmetric linear system solving algorithm
execution time to the standard algorithm execution time. For N > 350 the cen-
trosymmetric algorithm is faster. For larger IV, the centrosymmetric algorithm
is approaching the theoretical limit of four times faster. Right: accuracy of the
centrosymmetric and standard linear system solver for a linear system involving
the RBF system matrix over a range of the shape parameter.

This section summarizes an algorithm for solving a centrosymmetric linear
system that is described in [1]. Let B be centrosymmetric, x = [z; x2]T, and
f = [f1 f2]* where x1,z2, f1, fo are P x 1 vectors. As a result of Theorem
2, solving the linear system Bz = f is equivalent to solving QDQ”z = f or
DQx = Qf. Writing out the last equation gives

sl e
0 M x4+ Jao fi+Jfe
Equation (18) represents two uncoupled half-sized P x P systems with solutions
t1 = v1—Jzo and t; = x1+ Jxa. The solution of the original system is recovered
as rp = % (tl + t2) and T = %J(tz — tl).

Since B and D are similar, the eigenvalues of L and M must also be eigenval-
ues of B. In addition to being symmetric, both L and M are positive definite and
have a Cholesky factorization. It must be that (L) < k(B) and x(M) < x(B).

Typically some improvement in the conditioning of the smaller matrices is re-
alized, but the smaller matrices are still typically poorly conditioned. If the



matrices are too poorly ill-conditioned it may be that the matrices cease to
be numerically SPD and a Cholesky factorization will fail as it encounters the
square root of a negative number. Reference [21] describes how the method of
diagonal increments (MDI) can be effectively and efficiently used to regularize a
SPD system. MDI modifies the diagonal of a SPD matrix as B = B + pl where
1 is a regularization parameter with a typical value being u = 5e-15. MDI can
be used to regularize the two smaller systems and insure that the matrices L
and M are numerically SPD.
The dominant term in flop count

1/N\* 1 .
23 ( 2 ) BETRE
of the algorithm for solving a linear system is from the two half-sized Cholesky
factorizations. When compared to the solution of the larger N x N system by a
Cholesky factorization, the centrosymmetric algorithm is asymptotically more
efficient by a factor of 4 concerning the flop count and by a factor of two in
storage requirements. The left image of Figure 2 displays the efficiency factor
as a function of N. The efficiency factor measures the ratio of the execution
time of the centrosymmetric algorithm to the standard algorithm. For small
N < 100 the set up costs of the centrosymmetric algorithm cause the standard
algorithm to be more efficient, but the efficiency factor of the centrosymmet-
ric algorithm increases with N. The script systemSolveBench.m from the
MRBEFT produces the image. The right image of Figure 2 compares the ac-
curacy of the two algorithms. In this example, the centrosymmetric algorithm
is more accurate than the standard algorithm as soon as the full sized system
matrix becomes moderately ill-conditioned. This is illustrated in the right im-
age of Figure 2. With NV = 44 centers in a fixed location the condition number
of the system matrix increases as the shape parameter is reduced. The script
centroSolveAccuracy.m produces the image.

5.2 Derivative matrix formation

The standard way to form a RBF differentiation matrix (DM) is to use a $ N3
Cholesky factorization followed by a forward and a back substitution for each
column (N x 2N? flops) for a total of N3 = 28 N3 in the dominant term of the
flop count.

The algorithm from section 5.1 can be used to form RBF differentiation

matrices using two half-sized Cholesky factorizations, %N 3. and 2 forward and

back substitutions for each half-sized column, 2% X 2 (%)2 = %N 3. for a total
1—72N 3 in the dominant term of the flop count. A savings of a factor of four in
the flop count and a factor of two savings in storage can be realized. Figure 3
plots the efficiency factor of the centrosymmetric algorithms over the standard
algorithm as a function of N. The script dmFormBench.m produces the plot.
Note the outlier at NV ~ 5500 in the plot. If the script were to be run again,
outliers may appear for other N but the overall asymptotic trend will always



be apparent. Additionally, the centro algorithm preserves the theoretical centro
structure that the matrix should have whereas the standard algorithm does not.
The consequences of this aspect of the algorithm is commented on in section 7.

0.7

0.65 |
0.6 | W
0.55 |
05} -

*
045 | #¥ *

04 r

execution time ratio

w Wx ¥
0.35 | L T ™

* Nl aal
A L * T * »
0 2000 4000 6000 8000
N

0.3

Figure 3: Ratio of centrosymmetric matrix DM formation time to standard ma-
trix DM formation execution time. For N > 150 the centrosymmetric algorithm
is faster. For larger N, the centrosymmetric algorithm is over three times faster.

5.3 System matrix condition number

Theoretically, the 2-norm condition number of a SPD matrix is the ratio of
the largest eigenvalue of the matrix to the smallest eigenvalue. Ill-conditioning
can cause the eigenvalues to be calculated as complex numbers and a more
stable approach is to use the singular value decomposition (SVD) to calculate
the 2-norm condition number as k2(B) = 0w/ 0min Where o are the singular
values of the matrix. The SVD is necessarily an iterative process, therefore
an exact flop formula is not possible. The flop count also depends on whether
the singular vectors are calculated. An approximate flop count for calculating
only the singular values is given in [9, p. 254] as §N3. Due to Theorem 2,
the 2-norm condition number of a centrosymmetric system matrix B, as well
as the condition numbers of the matrices L and M, can be calculated with a
factor of four reduction in the dominant term in the flop count when compared
to the standard algorithm for the 2-norm condition number of a matrix. The
condition numbers of L and M are of interest as they are the two P x P matrices
that are inverted in order to solve a centrosymmetric linear system or to form
a derivative matrix.

The left image of Figure 4 shows the execution time of the centrosymmetric
algorithm versus the standard algorithm over a range of N. For larger N the
centrosymmetric algorithm is approximately five times more efficient. The factor

10



of four savings from the SVD and additional savings from only forming half-sized
distance and system matrices contribute to the overall efficiency factor. The
right image of Figure 4 shows the condition number of the system matrix over
a range of shape parameter as computed by the two algorithms. As expected
the outputs agree up to condition numbers of size O (1016) and then due the
ill-conditioning of the problem there is a slight variation for larger condition
numbers.
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Figure 4: Left: Ratio of centrosymmetric 2-norm condition number execution
time to the standard algorithm. For larger N the centrosymmetric algorithm
is approximately five times faster. The script condBench.m of the MRBFT
[19, 22] produces the image. Right: condition number versus the shape param-
eter from the two algorithms. The script centroCondTest.m of the MRBFT
produces the image.

5.4 Matrix-vector multiplication

Centrosymmetric matrix multiplication is an old idea that has been reinvented
several times. According to reference [3, p. 190], its origin traces back to
Runge who used the idea as a building block in an early variant of the FFT
algorithm. In the context of pseudospectral methods, it is discussed in [3, 25].
The algorithm has previously been referred to as parity matrix multiplication
[3] as well as even-odd decomposition [25].

Given an appropriate center distribution (section 4), RBF derivative eval-
uation matrices H have a centro structure. The inverse of a centrosymmet-
ric matrix is centrosymmetric (B~} (JBJ)™! = J1B~lJ"t = JB71J),
a centrosymmetric matrix times a centrosymmetric matrix is a centrosymmet-
ric matrix (JBJJAJ = J(BA)J), and a skew-centrosymmetric matrix times
a centrosymmetric matrix is a skew-centrosymmetric matrix —JBJJAJ =

11
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Figure 5: Ratio of centrosymmetric matrix multiplication execution time to
standard matrix multiplication execution time. For N > 900 the centrosym-
metric algorithm is faster and the limiting efficiency factor of two is being ap-
proached. The script multiplicationBench.m produces the image.

—J(BA)J. As a result RBF differentiation matrices D = B~!H have a centro
structure if B and H have a centro structure.
Matrix vector multiplication can be structured into blocks as

[f1:|:|:Bll|Bl2]|:$1:|
f2 Boy | Bz Ty |’

The blocks can be executed as subproblems to obtain the larger result

fi = Buzi + B
fo = Boi1x1+ Baawo

where the matrix blocks are P x P and the vector blocks are P x 1.

The (skew-)centrosymmetric structure of a matrix can be used to accomplish
a matrix-vector multiplication using half as many flops as the general case. For
the skew-centrosymmetric case, N even, and P = N/2 matrix-vector multiplica-
tion can be accomplished as follows. Let Jy and Jp be contra-identity matrices
with dimensions NV x N and P x P respectively. Break the vector  which is to
be multiplied up into its even (symmetric) and odd (skew-symmetric) parts as

¢ z°

x:%(m—!—JNQZ)—l—%(x—JN:z:). (19)

Note that )
e - Itlg
=3 (x+ Jyz) = [ Jpx§ ]

12



o_ 1 I 1
x —E(x—JNa:)—{_JPx?}

Due to the linearity of matrix multiplication
f=Bx=B(a*+2°) = f¢+ f°.

That is, the matrix can be applied to = and z° separately and then the results
can be combined to get f. The result of multiplying the upper half of the even
part is

L
—_—
ff = Bll Itlg — JPB21JP (Jp:l?tlg) = (B11 — JPB21) Itlg (20)

and
— prs = —JP (le Itlg — JPB11JP (JPIT)) = (B11 — JpBgl) Itlg = ff (21)

Equations (20) and (21) imply that

[
/ _[—J;ff]

and that f€ is odd. As a result, only half of the vector needs to be computed
as Lz§ = ff via multiplication by a P x P matrix. The result of multiplying
the upper half of the odd part is

M
—_—
flo = B11 x‘l’ — JpBo1Jp (—Jprl’) = (Bll + JPBQl) x‘l’ (22)

and also note that
prg =Jp (B21 x‘f — JpB11Jp (—Jpx(l))) = (Bll =+ JPBQl) x‘l’ = ff (23)

Equations (22) and (23) imply that

o_ | I
/ _[Jplff}

and that is f° even. Only half of the odd product needs to be computed as
Mzx¢ = f7. The full vector f can be computed as

[fl}:{ L+t ]:{ L+ 1 } (24)
f2 Jpf? = Jpfi Je(ff = f1) |

The algorithm is nearly the same if B is centrosymmetric rather than skew-
centrosymmetric. The only differences are that L and M are replaced with
L = Bi1 + JpBoy and M = Bi; — JpBs respectively and that the result of

13



multiplying the even vector is even and the result of multiplying the odd vector
is odd which results in the vector f being reconstructed as

|:f1:|:|: ff+ff :|:|: f10+fle :| (25)
[ I Y e R A N
Since L = B11 — Jp321 = Bll - JP(—JPB12J) = B11 + B12JP and M =
Bi1 + JpB21 = Bi1 + Jp(—JpBiaJp) = Bi1 — BiaJp it is only necessary to
construct and use half of the matrix B. There is the option to construct either
the upper half or the left half. The software [19, 22] uses the left half of the
matrix in all algorithms.
The leading term in the flop count of the centrosymmetric matrix-vector
multiplication algorithm is
N\,
o (X) o

Asymptotically, a factor of two is saved in the flop count compared to the
standard algorithm. An additional factor of two is saved in storage. The per-
formance of the centrosymmetric algorithm versus the standard algorithm over
a range of N is shown in Figure 5.

6 Numerical PDE examples

In this section a two dimensional time-dependent PDE problem and a boundary
value problem, both with Dirichlet boundary conditions, are solved while taking
advantage of a centro center distribution on a unit circle domain. The RBF
method for PDEs is referred to as the asymmetric collocation method or Kansa’s
method [13].

The boundary value problem consists of the Poisson equation

Ugy + Uy = —m sin(7r) sin(my) (26)
with Dirichlet boundary conditions prescribed according to the exact solution
u(z,y)=1—c+ay+ % sin(ma) sin(7y).

The time-dependent problem is the diffusion-reaction equation
Up =V (Ugg + Uyy) + 7u2(1 —u). (27)

with the initial condition and Dirichlet boundary conditions specified from the
exact solution
w(z,y,t) = [1+explafz+y —bt] + )] " (28)

where a = \/v/4v, b =2,/4V, and ¢ = a(b — 1).
The centro center distribution was obtained via an origin extension, but an
x-axis or y-axis extension would work as well. In order for the resulting matrices

14



to be centrosymmetric after boundary conditions are applied, the centers on the
boundary need to be ordered into two groups. Let NN be the number of total
centers, n;, an even number of boundary centers, and nj = np/2. Let X be a
centro center distribution with centers ordered so that half the boundary centers
come first, followed by all interior centers, and then the remaining half of the
boundary centers. Then both the steady and time-dependent problem have the
evaluation matrix (10) with the following block structure

bjr(6), j=1,...,npandk=1,...,N
H = hjk(lo), j=np+1,....N—npand k=1,...,N (29)
bjr(6), j=N-n,+1,...,.Nandk=1,...,N

where the operator D in (10) is the Laplacian. Both problems have the same
system matrix B (6).

The solution of the steady problem is found by first finding the expansion
coefficients @ = H~! f by solving the linear system Ha = f by the algorithm of
section 5.1 except that LU factorization is used instead of a Cholesky factoriza-
tion as H is not SPD. After a shape parameter is selected, the condition number
of the matrix H is calculated by the centrosymmetric algorithm of section 5.3.
If the condition number is too small or too large, a different shape parameter is
selected until the condition number of the matrix is approximately O (1016). In
this case there is no guarantee that H is invertible, as counter examples exist
to show that it is possible for H to be singular [11]. Despite not being able
to show that H is invertible, extensive application of the method has shown
that in practice H is invertible and the method has been widely applied since
its introduction over 25 years ago. After the expansion coefficients have been
found, the approximate solution is evaluated as u = Ba by the centrosymmetric
multiplication algorithm of section 5.4. With N = 5000, standard algorithms
take 30.8s to execute while the same problem takes 6.6s using centrosymmetric
algorithms.

The solution of the time-dependent problem is found by first selecting a
shape parameter and then the condition number of the matrix B is calculated
by the centrosymmetric algorithm of section 5.3. If the condition number is too
small or too large, a different shape parameter is selected until the condition
number of the matrix is approximately O (10'¢). Then the derivative matrix
D = HB™! which discretizes the space derivatives is formed by the centrosym-
metric algorithm of section 5.2. After the PDE is discretized in space with
the RBF method, the resulting semi-discrete system u; = F(u) is advanced in
time with an explicit Runge-Kutta method. At each stage of the Runge-Kutta
method the matrix-vector multiplication Du is performed using the centrosym-
metric algorithm of section 5.4. With N = 5000, standard algorithms take 592s
to execute while the same problem takes 81s using centrosymmetric algorithms
when advancing the solution to time ¢ = 5 with a time step size of At = 0.001.

The script poissonCentro.m carries out the steady PDE example and the
scripts diffusionReactionCentro.m and diffusionReactionCentroDriver.m
carry out the time-dependent PDE example.
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7 Consequences of not preserving symmetry

Forming or operating on theoretically centrosymmetric RBF matrices with al-
gorithms that do not preserve centrosymmetry can have negative consequences.

For example, consider the 1d advection equation u; + u, = 0 on the in-
terval [—1,1] with periodic boundary conditions. In this case the derivative
matrix theoretically has purely imaginary eigenvalues [18]. The problem is dis-
cretized in space with the IQ RBF, ¢ = 4.5, and N = 60 centers distributed
via z = cos(kn/(N — 1)), k = 0,...,N — 1. The system matrix has a con-
dition number that is O (1017). The derivative matrix D is formed two ways:
1) via a Cholesky factorization for which ||D 4 JDJ||, = 4.2e5, and 2) via the
centrosymmetric algorithm from section 5.2 for which ||D + JDJ||, = 0. The
skew-centrosymmetric DM differentiates a symmetric function with a smaller
error than does the DM formed with the standard algorithm and the error is
symmetric (left image of Figure 6). The eigenvalues of the skew-centrosymmetric
DM are purely imaginary whereas the non skew-centrosymmetric DM has eigen-
values with both significant positive and negative real parts which prevents the
PDE from being advanced in time with a numerical ODE method.
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Figure 6: Differentiation matrix constructed and applied with and without
preservation of centrosymmetry. Left: differentiation of a symmetric function.
Right: differentiation matrix eigenvalues.

8 Conclusions
The RBF method’s complete freedom of choice of center locations can be ex-

ploited to reduce computational expense and storage requirements of the meth-
ods as well as to improve accuracy and properties such as eigenvalue stability in
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time-dependent PDE problems. Center distributions that result in centrosym-
metric structure in RBF system and differentiation matrices do not place restric-
tions on the locations of the centers but rather on the distances between them.
The desired distances result in signed distance matrices (8) with centrosymme-
try. The framework allows scattered centers with boundary clustering that is
desirable with the RBF method. In two dimensions, the center distributions are
possible in domains that are symmetric with respect to either the x-axis, y-axis,
the origin, or can be made so by a linear transformation or rotation.

For large N, algorithms that exploit centrosymmetry can be used to reduce
the flop counts in common linear algebra operations that are associated with the
RBF method. The dominant term in the flop count for matrix factorization can
be reduced from %N 3 to 1—12N 3, for forming a derivative matrix from %N 3 to
1—72N 3, and for matrix-vector multiplication from 2N?2 to N2. A factor of two is
saved in storage as a centrosymmetric matrix is fully described by only half its
entries. Due to the ill-conditioned nature of the standard RBF basis, extended
precision floating point arithmetic is often used with RBF methods [12, 20, 23].
Centrosymmetry can be used to mitigate the longer execution times of extended
precision algorithms that are implemented in software.

For both larger N and for smaller N used with local methods, the use of cen-
trosymmetric algorithms to preserve symmetry can be beneficial for maintaining
accuracy and properties such as the correct eigenstructure of differentiation ma-
trices.

All algorithms described in this manuscript are implemented in freely avail-
able software [19, 22].
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