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Abstract

Under the governing equations of Hyperbolic Heat Transfer thermal
disturbances travel with a finite speed of propagation and are visible
as sharp discontinuities in the solution profiles. Due to the well-known
Gibbs phenomenon, the numerical solution of hyperbolic heat trans-
fer problems by high order numerical methods such as pseudospectral
methods will feature non-physical numerical oscillations. For pseu-
dospectral methods, postprocessing methods have been developed to
lessen or even eliminate the effects of the Gibbs phenomenon. The
most powerful postprocessing methods require that the exact location
of the discontinuities be known. Due to the reflection and interac-
tion of thermal waves, the solutions of multi-dimensional hyperbolic
heat transfer problems often have very complex features which make
accurately locating discontinuities difficult or even impossible. The
application of an edge detection free postprocessing method which is
effective for this type of problem is discussed.

*This work was partially supported by NSF grant DMS-0609747
fDepartment of Mathematics, Marshall University, One John Marshall Drive, Hunt-
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NOMENCLATURE

DTV postprocessing regularization parameter
Chebyshev expansion coefficients
Chebyshev differentiation matrix

N-+1 collocation points

DTV postprocessing neighborhood
dimensionless energy generation rate
dimensionless temperature

k" order Chebyshev polynomial
dimensionless time

dimensionless heat flux in the x direction
dimensionless heat flux in the y direction
dimensionless space variable
dimensionless space variable

coordinate map parameter

DTV postprocessing fitting parameter
DTV postprocessing strength function



1 Introduction

In situations where heat transfer occurs over a very short period of time
at very high or very low temperatures, the classical diffusion (parabolic)
theory of heat transfer breaks down since the wave nature of thermal energy
transport becomes dominant. The hyperbolic heat equations model this
process and it results in energy propagating through a medium as a wave
with sharp discontinuities at the wave front.

In one dimension, the dimensionless governing equations of Hyperbolic
Heat Transfer are

T,+Q. = S/2 (1)
Qt+Tx == _2Q

where T'(z,t) is the temperature, Q(x,t) is the heat flux, and S(x,t) is the
energy generation rate. In two space dimensions the equations become

Q+T. = —2Q (2)
R; + Ty = 2R

where T'(x,y,t) is the temperature, Q(z,y,t) is the heat flux in the x direc-
tion, R(x,y,t) is the heat flux in the y direction, and S(z,y,t) is the energy
generation rate.

Previously, various numerical methods have been used to obtain approx-
imate solutions of hyperbolic heat transfer problems. First, local methods
such as second-order finite difference methods were applied as in references
[1, 2, 3]. With finite difference methods often as many as 1000 grid points
were used in a small one-dimensional domain to resolve the problem and os-
cillations were still visible around the discontinuity at the temperature front.
More recently, several authors [4, 5] have used non-oscillatory second-order
finite difference methods which suppress oscillations by using a flux or slope
limiter.

The superiority of pseudospectral methods over lower order local meth-
ods for the solution of partial differential equations with sufficiently smooth
solutions has been well established. When the solution is sufficiently smooth
pseudospectral methods exhibit what is termed spectral or exponential ac-
curacy. However, when solutions are only piecewise smooth the Gibbs phe-
nomenon appears as an accuracy reduction to first order away from discon-
tinuities and O(1) oscillations in the neighborhoods of jumps. Despite pro-
ducing oscillatory solutions on problems with discontinuities, pseudospectral



methods still have a huge advantage over lower order finite difference meth-
ods since they only have minimal dispersion and dissipation errors and are
able to match the accuracy of finite difference methods with significantly
fewer grid points.

Over the last decade or so, several postprocessing methods have been
developed to lessen or even completely remove the effects of the Gibbs phe-
nomenon. A survey of pseudospectral postprocessing methods and software
that implements the methods can be found in [6]. In [7] we examined the
application of the Chebyshev pseudospectral method with Gegenbauer re-
projection postprocessing for hyperbolic heat conduction problems in one-
dimension. Applications in two dimensions were not considered because,
while theoretically possible, we were unable to apply the Gegenbauer repro-
jection method in two dimensions. The Gegenbauer reprojection method
requires that exact locations of each discontinuity be precisely known and
then two function dependent parameters must be specified in each smooth
subinterval. The application of the Gegenbauer reprojection method may
be difficult in one-dimension, but its application is nearly impossible for
functions with complex features in two-dimensions. This is especially true
if the discontinuities are not orthogonal to the cartesian grid.

The purpose of this work is to describe the solution of hyperbolic heat
transfer problems in two-dimensions by the Chebyshev pseudospectral method
and then describe an efficient, easy to implement, postprocessing algorithm
that lessens the effects of the Gibbs phenomenon and sharply resolves steep
fronts without smearing.

2 Chebyshev Pseudospectral Method

The Chebyshev Pseudospectral (CPS) method is based on the interpolating
Chebyshev expansion

N
Inu(x) = ay T(z) (3)
k=0

standardized to the interval 2 = [—1, 1]. The Chebyshev polynomials are
Ty, (x) = cos(k arccos (z)) (4)

and the Chebyshev expansion coefficients are denoted as aj. The expansion
satisfies Zyu(z;) = u(x;) at N + 1 interpolation cites x;. The interpolation
sites or collocation points are the Chebyshev-Gauss-Lobatto (GCL) points

) .
= — —- =0,1,...,.N 5
. <N) j=0.1, ... (5)
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which cluster densely around the boundaries of the domain. In applica-
tions of the CPS method for solving time-dependent PDEs, it is common to
redistribute the CGL points via the map [§]

_ arcsin[—~ cos(mj /N)]

- , 7=0,1,...N, 0<~vy<1. (6)
arcsin(7y)
The mapped points are more uniformly spaced and allow a larger stable
time step when using explicit time integration methods.
Space derivatives can be approximated by multiplying by the Chebyshev
differentiation matrix D as
uz; = Du

in O(N?) floating point operations. Formulas for the entries of D as well as
more detailed information on the CPS method can be found in the standard
references [9, 10, 11, 12, 13]. For large N, derivatives can efficiently be eval-
uated via the fast cosine transform in O(N log N) floating point operations.
Freely available software for implementing the CPS method is described in
[14]. After the partial differential equation is discretized in space with the
Chebyshev method, a method of lines approach is taken, and the system of
ordinary differential equations

uy = F(u,t)

is advanced in time with an ODE method. In the numerical examples we
have used a fourth-order Runge-Kutta method. In higher dimensions, the
CPS method is implemented on a tensor product grid that is a (mapped)
CGL grid set up independently in each space direction.

3 Digital Total Variation Filtering

The Total Variation (TV) de-noising model is a popular image process-
ing method to remove noise from a digital image. The model formulates
a minimization problem which leads to a nonlinear Euler-Lagrange PDE
to be solved by numerical PDE methods. In [15, 16] the authors develop
a discrete version of the TV model on a graph and refer to it as Digital
Total Variation (DTV) filtering. The DTV method was used to postpro-
cess Chebyshev pseudospectral approximations of Hyperbolic Conservation
Laws in [17]. The method works with point values in physical space and
not with the spectral expansion coefficients. The DTV method does not
need to know the location of edges. The point values may be located at



scattered, non-structured cites, in complex geometries. The DTV method
can be implemented in a very computationally efficient manner. While the
method does mitigate the effects of the Gibbs phenomenon it does not make
any claims of restoring spectral accuracy.

General points in the computational domain are denoted by «, 3, .
The notation a ~ (3 indicates that o and (8 are neighbors. All the neighbors
of a point « are denoted by

No ={B€Q[B~a}. (7)

In one dimension, IV, is simply the points to the left and right of the point be-
ing postprocessed. In two space dimensions there is more than one way to de-
fine N, (figure 1). One is to consider at a point «; ; four neighboring points,
Nt = { j+1,iq1,5, 04 j—1,-1;} and another is an eight point neighbor-
hood, N§ = {Q j1, Qi1 j41s Qi1 js Qi1 j—1y i j—1s Qi1 j—15 Qi1 5 Qi1 j41}-
We have used N8 in the numerical examples, however the results with N2
are similar.
The graph variational problem is to minimize the fitted TV energy

A
LY () = 3 Vauly + 5 3 (e — )’ 0
a€el) aE

where u? is the spectral approximation containing the Gibbs oscillations and
A the user specified fitting parameter. The unique solution to this problem
is the solution of the nonlinear restoration equation

1 1 o
%(ua - U,B) (|vau‘a + ‘vﬁu‘a> -+ )\(Ua — ua) =0 (9)

where the regularized location variation or strength function at any point «
is defined as
1/2
Vauly = | 3 (ug —ua)® +a*| . (10)
BENa

The regularization parameter a is a small (we have used a = 0.0001 in the
numerical examples) value used to prevent a zero local variation and division
by zero.

To solve the nonlinear system, time marching with the explicit Euler
method is used to advance a preconditioned form of the (9)

dug, |V aul 0
Ha _ - 1 a —0). (1
i = ) (1[G ) + A Ve (o =) (1)




to a steady state. Typically about 100 time steps are required. An effective
stopping criteria for the time marching is for the relative L! residual between
two consecutive time steps to be less than some tolerance, i.e.,

a1 — ]

)]

Equation (11) is essentially a local finite difference approximation with each
time iteration taking O(N) floating point operations. Thus, the DTV fil-
tering algorithm is computationally efficient as long as not too many time
marching steps are taken.

An optimal value of the fitting parameter is not known. However, a
large range of values for A results in a “good” postprocessing. In general,
stronger oscillations are best handled with a small fitting parameter (< 10)
while weaker oscillations require a larger value of the fitting parameter.
More details on selecting the value of the fitting parameter can be found in
reference [17]. Freely available software that implements DTV filtering is
described in [6]. Reference [6] also gives a more detailed comparison of the
DTV filter with competing postprocessing methods.

< tol. (12)

4 Numerical Examples

To assess the accuracy of the method we first consider an example in one di-
mension with an exact solution. We take equations (1) with S = 0 and initial
conditions T'(x,0) = 0, Q(z,0) = 0, and boundary conditions 7'(0,¢) = 1,
T(1,t) = 0. An exact solution is given in reference [1]. The grid is set up
with N = 127 and mapping parameter v = 0.99. The solution is advanced
in time with At = 0.001 to time ¢ = 0.5. The oscillatory Chebyshev solution
along with the exact temperature profile are in the left image of figure 2.
DTV postprocessing is applied with fitting parameter A = 40 and 200 time
steps are taken to advance the solution to a steady state. The postprocessing
took 0.03 seconds using the algorithm implemented in Matlab running on
a desktop computer that is representative of current computer technology.
The point-wise errors from the CPS method and the DTV postprocessed
CPS method are compared in figure 3.

The first example in two dimensions considers equations (2) on a rectan-
gular domain with dimensions [0, 1]x [0, 0.5] with initial conditions T'(x,y,0) =
1 and Q(z,y,0) = 0. Boundary conditions g—g = 0 are enforced everywhere
except where x = 0 and 0.125 < y < 0.375 where a constant temperature of



T = 2 is maintained. The problem is solved with the Chebyshev pseudospec-
tral method on a tensor product grid determined by v, = 0.995, v, = 0.99,
N, = 200, and N, = 100. The solution is advanced to time ¢ = 0.6 with
At = 0.00025. The initial discontinuity in the temperature propagates to
the right and expands until it reaches the top and bottom of the domain and
then it is reflected. A contour plot of the Chebyshev pseudospectral solution
is in the upper image of figure 4. The DTV postprocessed solution is in the
lower image of figure 4. The postprocessing took less than one second. An
exact solution to the problem is unknown. The results are in good qualita-
tive agreement with the solution of the same problem by second-order total
variation diminishing methods in [5] and [4].

The second two-dimensional example considers equations (2) on a square
domain with dimensions [0, 1]x[0, 1]. Initially, Q(z,y,0) = 0 and T'(z,y,0) =
0 at all points except for in a circle of radius 0.01 centered at the point
(0.5,0.5) where T'(z,y,0) = 1. On the boundary of the square the tem-
perature is fixed at T" = 0. The problem is solved with the Chebyshev
pseudospectral method on a tensor product grid determined by v, = 0.999,
vy = 0.999, N, = 160, and N, = 160. A contour plot of the Chebyshev
pseudospectral temperature solution and DTV postprocessed temperature
at t = 0.1 are shown in the upper portion of figure 5. Postprocessing at
25,921 collocation points took less than one second. The lower portion of
figure 5 shows the same information but at time t = 1 when the wavefront
has reflected off the boundary and is traveling towards the origin. The solu-
tions agree qualitatively with solution of the same problem by a second-order
total variation diminishing method in [18].

5 Conclusions

The advantages of Pseudospectral methods over lower order finite difference
and finite element methods in simulating wave type phenomena is well-
documented. Pseudospectral methods have minimal phase and dissipation
errors and can capture wave type phenomena using relatively few colloca-
tion points. The accuracy of pseudospectral methods is severely degraded by
Gibbs oscillations when discontinuities are present. Several pseudospectral
postprocessing methods have been developed to lessen or even eliminate the
effects of the Gibbs phenomenon. The most powerful postprocessing meth-
ods require that the exact location of the discontinuities be known. The com-
plex features in the solutions of multi-dimensional hyperbolic heat transfer
problems make it difficult to accurately locate discontinuities and methods



that depend on the information perform poorly or fail. Additionally, many
such postprocessing methods require one or more function dependent pa-
rameters to be specified in each smooth subinterval while the DTV method
only requires one global parameter. In this work, DTV filtering has been
shown to be an effective algorithm for efficiently lessening the effects of the
Gibbs phenomenon in two-dimensional hyperbolic heat transfer problems.
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Figure 1: 2d DTV neighborhoods: Left, N2. Right: N8
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Figure 2: Left: Chebyshev pseudospectral (oscillatory) temperature vs. ex-
act at t = 0.5. Right: DTV postprocessed temperature and the visually
indistinguishable exact solution.
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Figure 3: Approximation errors from the 1d problem in figure 2: Chebyshev
pseudospectral (upper dashed) and DTV postprocessed (lower solid).
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Figure 4: Contour plots with a constant interval of 0.025 for the first two-
dimensional example. Upper: Chebyshev pseudospectral temperature at
t = 0.6. Lower: DTV postprocessed temperature, A = 40 and 200 time
steps
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Figure 5: Upper: Temperature contour plots at ¢ = 0.1 with a constant
interval of 0.025 for the second two-dimensional example. Left: Chebyshev
pseudospectral. Right: DTV postprocessed, A = 15 and 200 time steps.
Lower: Temperature at ¢ = 1.0 with a constant interval of 0.01. Left:
Chebyshev pseudospectral. Right: DTV postprocessed, A = 15 and 200
time steps.
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